
            

Chapter 8

Law of Large Numbers

8.1 Law of Large Numbers for Discrete Random
Variables

We are now in a position to prove our first fundamental theorem of probability.
We have seen that an intuitive way to view the probability of a certain outcome
is as the frequency with which that outcome occurs in the long run, when the ex-
periment is repeated a large number of times. We have also defined probability
mathematically as a value of a distribution function for the random variable rep-
resenting the experiment. The Law of Large Numbers, which is a theorem proved
about the mathematical model of probability, shows that this model is consistent
with the frequency interpretation of probability. This theorem is sometimes called
the law of averages. To find out what would happen if this law were not true, see
the article by Robert M. Coates.1

Chebyshev Inequality

To discuss the Law of Large Numbers, we first need an important inequality called
the Chebyshev Inequality.

Theorem 8.1 (Chebyshev Inequality) Let X be a discrete random variable
with expected value µ = E(X), and let ε > 0 be any positive real number. Then

P (|X − µ| ≥ ε) ≤ V (X)
ε2

.

Proof. Let m(x) denote the distribution function of X. Then the probability that
X differs from µ by at least ε is given by

P (|X − µ| ≥ ε) =
∑
|x−µ|≥ε

m(x) .

1R. M. Coates, “The Law,” The World of Mathematics, ed. James R. Newman (New York:
Simon and Schuster, 1956.
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We know that

V (X) =
∑
x

(x− µ)2m(x) ,

and this is clearly at least as large as∑
|x−µ|≥ε

(x− µ)2m(x) ,

since all the summands are positive and we have restricted the range of summation
in the second sum. But this last sum is at least∑

|x−µ|≥ε
ε2m(x) = ε2

∑
|x−µ|≥ε

m(x)

= ε2P (|X − µ| ≥ ε) .

So,

P (|X − µ| ≥ ε) ≤ V (X)
ε2

.

2

Note that X in the above theorem can be any discrete random variable, and ε any
positive number.

Example 8.1 Let X by any random variable with E(X) = µ and V (X) = σ2.
Then, if ε = kσ, Chebyshev’s Inequality states that

P (|X − µ| ≥ kσ) ≤ σ2

k2σ2
=

1
k2

.

Thus, for any random variable, the probability of a deviation from the mean of
more than k standard deviations is ≤ 1/k2. If, for example, k = 5, 1/k2 = .04. 2

Chebyshev’s Inequality is the best possible inequality in the sense that, for any
ε > 0, it is possible to give an example of a random variable for which Chebyshev’s
Inequality is in fact an equality. To see this, given ε > 0, choose X with distribution

pX =
(
−ε +ε
1/2 1/2

)
.

Then E(X) = 0, V (X) = ε2, and

P (|X − µ| ≥ ε) =
V (X)
ε2

= 1 .

We are now prepared to state and prove the Law of Large Numbers.
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Law of Large Numbers

Theorem 8.2 (Law of Large Numbers) Let X1, X2, . . . , Xn be an independent
trials process, with finite expected value µ = E(Xj) and finite variance σ2 = V (Xj).
Let Sn = X1 +X2 + · · ·+Xn. Then for any ε > 0,

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε)→ 0

as n→∞. Equivalently,

P

(∣∣∣∣Snn − µ
∣∣∣∣ < ε

)
→ 1

as n→∞.

Proof. Since X1, X2, . . . , Xn are independent and have the same distributions, we
can apply Theorem 6.9. We obtain

V (Sn) = nσ2 ,

and

V (
Sn
n

) =
σ2

n
.

Also we know that
E(

Sn
n

) = µ .

By Chebyshev’s Inequality, for any ε > 0,

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) ≤ σ2

nε2
.

Thus, for fixed ε,

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε)→ 0

as n→∞, or equivalently,

P

(∣∣∣∣Snn − µ
∣∣∣∣ < ε

)
→ 1

as n→∞. 2

Law of Averages

Note that Sn/n is an average of the individual outcomes, and one often calls the Law
of Large Numbers the “law of averages.” It is a striking fact that we can start with
a random experiment about which little can be predicted and, by taking averages,
obtain an experiment in which the outcome can be predicted with a high degree
of certainty. The Law of Large Numbers, as we have stated it, is often called the
“Weak Law of Large Numbers” to distinguish it from the “Strong Law of Large
Numbers” described in Exercise 15.
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Consider the important special case of Bernoulli trials with probability p for
success. Let Xj = 1 if the jth outcome is a success and 0 if it is a failure. Then
Sn = X1 +X2 + · · ·+Xn is the number of successes in n trials and µ = E(X1) = p.
The Law of Large Numbers states that for any ε > 0

P

(∣∣∣∣Snn − p
∣∣∣∣ < ε

)
→ 1

as n → ∞. The above statement says that, in a large number of repetitions of a
Bernoulli experiment, we can expect the proportion of times the event will occur to
be near p. This shows that our mathematical model of probability agrees with our
frequency interpretation of probability.

Coin Tossing

Let us consider the special case of tossing a coin n times with Sn the number of
heads that turn up. Then the random variable Sn/n represents the fraction of times
heads turns up and will have values between 0 and 1. The Law of Large Numbers
predicts that the outcomes for this random variable will, for large n, be near 1/2.

In Figure 8.1, we have plotted the distribution for this example for increasing
values of n. We have marked the outcomes between .45 and .55 by dots at the top
of the spikes. We see that as n increases the distribution gets more and more con-
centrated around .5 and a larger and larger percentage of the total area is contained
within the interval (.45, .55), as predicted by the Law of Large Numbers.

Die Rolling

Example 8.2 Consider n rolls of a die. Let Xj be the outcome of the jth roll.
Then Sn = X1 +X2 + · · ·+Xn is the sum of the first n rolls. This is an independent
trials process with E(Xj) = 7/2. Thus, by the Law of Large Numbers, for any ε > 0

P

(∣∣∣∣Snn − 7
2

∣∣∣∣ ≥ ε)→ 0

as n→∞. An equivalent way to state this is that, for any ε > 0,

P

(∣∣∣∣Snn − 7
2

∣∣∣∣ < ε

)
→ 1

as n→∞. 2

Numerical Comparisons

It should be emphasized that, although Chebyshev’s Inequality proves the Law of
Large Numbers, it is actually a very crude inequality for the probabilities involved.
However, its strength lies in the fact that it is true for any random variable at all,
and it allows us to prove a very powerful theorem.

In the following example, we compare the estimates given by Chebyshev’s In-
equality with the actual values.
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Figure 8.1: Bernoulli trials distributions.
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Example 8.3 Let X1, X2, . . . , Xn be a Bernoulli trials process with probability .3
for success and .7 for failure. Let Xj = 1 if the jth outcome is a success and 0
otherwise. Then, E(Xj) = .3 and V (Xj) = (.3)(.7) = .21. If

An =
Sn
n

=
X1 +X2 + · · ·+Xn

n

is the average of the Xi, then E(An) = .3 and V (An) = V (Sn)/n2 = .21/n.
Chebyshev’s Inequality states that if, for example, ε = .1,

P (|An − .3| ≥ .1) ≤ .21
n(.1)2

=
21
n
.

Thus, if n = 100,
P (|A100 − .3| ≥ .1) ≤ .21 ,

or if n = 1000,
P (|A1000 − .3| ≥ .1) ≤ .021 .

These can be rewritten as

P (.2 < A100 < .4) ≥ .79 ,

P (.2 < A1000 < .4) ≥ .979 .

These values should be compared with the actual values, which are (to six decimal
places)

P (.2 < A100 < .4) ≈ .962549

P (.2 < A1000 < .4) ≈ 1 .

The program Law can be used to carry out the above calculations in a systematic
way. 2

Historical Remarks

The Law of Large Numbers was first proved by the Swiss mathematician James
Bernoulli in the fourth part of his work Ars Conjectandi published posthumously
in 1713.2 As often happens with a first proof, Bernoulli’s proof was much more
difficult than the proof we have presented using Chebyshev’s inequality. Cheby-
shev developed his inequality to prove a general form of the Law of Large Numbers
(see Exercise 12). The inequality itself appeared much earlier in a work by Bien-
aymé, and in discussing its history Maistrov remarks that it was referred to as the
Bienaymé-Chebyshev Inequality for a long time.3

In Ars Conjectandi Bernoulli provides his reader with a long discussion of the
meaning of his theorem with lots of examples. In modern notation he has an event

2J. Bernoulli, The Art of Conjecturing IV, trans. Bing Sung, Technical Report No. 2, Dept. of
Statistics, Harvard Univ., 1966

3L. E. Maistrov, Probability Theory: A Historical Approach, trans. and ed. Samual Kotz, (New
York: Academic Press, 1974), p. 202
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that occurs with probability p but he does not know p. He wants to estimate p
by the fraction p̄ of the times the event occurs when the experiment is repeated a
number of times. He discusses in detail the problem of estimating, by this method,
the proportion of white balls in an urn that contains an unknown number of white
and black balls. He would do this by drawing a sequence of balls from the urn,
replacing the ball drawn after each draw, and estimating the unknown proportion
of white balls in the urn by the proportion of the balls drawn that are white. He
shows that, by choosing n large enough he can obtain any desired accuracy and
reliability for the estimate. He also provides a lively discussion of the applicability
of his theorem to estimating the probability of dying of a particular disease, of
different kinds of weather occurring, and so forth.

In speaking of the number of trials necessary for making a judgement, Bernoulli
observes that the “man on the street” believes the “law of averages.”

Further, it cannot escape anyone that for judging in this way about any
event at all, it is not enough to use one or two trials, but rather a great
number of trials is required. And sometimes the stupidest man—by
some instinct of nature per se and by no previous instruction (this is
truly amazing)— knows for sure that the more observations of this sort
that are taken, the less the danger will be of straying from the mark.4

But he goes on to say that he must contemplate another possibility.

Something futher must be contemplated here which perhaps no one has
thought about till now. It certainly remains to be inquired whether
after the number of observations has been increased, the probability is
increased of attaining the true ratio between the number of cases in
which some event can happen and in which it cannot happen, so that
this probability finally exceeds any given degree of certainty; or whether
the problem has, so to speak, its own asymptote—that is, whether some
degree of certainty is given which one can never exceed.5

Bernoulli recognized the importance of this theorem, writing:

Therefore, this is the problem which I now set forth and make known
after I have already pondered over it for twenty years. Both its novelty
and its very great usefullness, coupled with its just as great difficulty,
can exceed in weight and value all the remaining chapters of this thesis.6

Bernoulli concludes his long proof with the remark:

Whence, finally, this one thing seems to follow: that if observations of
all events were to be continued throughout all eternity, (and hence the
ultimate probability would tend toward perfect certainty), everything in

4Bernoulli, op. cit., p. 38.
5ibid., p. 39.
6ibid., p. 42.



        

312 CHAPTER 8. LAW OF LARGE NUMBERS

the world would be perceived to happen in fixed ratios and according to
a constant law of alternation, so that even in the most accidental and
fortuitous occurrences we would be bound to recognize, as it were, a
certain necessity and, so to speak, a certain fate.

I do now know whether Plato wished to aim at this in his doctrine of
the universal return of things, according to which he predicted that all
things will return to their original state after countless ages have past.7

Exercises

1 A fair coin is tossed 100 times. The expected number of heads is 50, and the
standard deviation for the number of heads is (100 · 1/2 · 1/2)1/2 = 5. What
does Chebyshev’s Inequality tell you about the probability that the number
of heads that turn up deviates from the expected number 50 by three or more
standard deviations (i.e., by at least 15)?

2 Write a program that uses the function binomial(n, p, x) to compute the exact
probability that you estimated in Exercise 1. Compare the two results.

3 Write a program to toss a coin 10,000 times. Let Sn be the number of heads
in the first n tosses. Have your program print out, after every 1000 tosses,
Sn − n/2. On the basis of this simulation, is it correct to say that you can
expect heads about half of the time when you toss a coin a large number of
times?

4 A 1-dollar bet on craps has an expected winning of −.0141. What does the
Law of Large Numbers say about your winnings if you make a large number
of 1-dollar bets at the craps table? Does it assure you that your losses will be
small? Does it assure you that if n is very large you will lose?

5 Let X be a random variable with E(X) = 0 and V (X) = 1. What integer
value k will assure us that P (|X| ≥ k) ≤ .01?

6 Let Sn be the number of successes in n Bernoulli trials with probability p for
success on each trial. Show, using Chebyshev’s Inequality, that for any ε > 0

P

(∣∣∣∣Snn − p
∣∣∣∣ ≥ ε) ≤ p(1− p)

nε2
.

7 Find the maximum possible value for p(1− p) if 0 < p < 1. Using this result
and Exercise 6, show that the estimate

P

(∣∣∣∣Snn − p
∣∣∣∣ ≥ ε) ≤ 1

4nε2

is valid for any p.

7ibid., pp. 65–66.
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8 A fair coin is tossed a large number of times. Does the Law of Large Numbers
assure us that, if n is large enough, with probability > .99 the number of
heads that turn up will not deviate from n/2 by more than 100?

9 In Exercise 6.2.15, you showed that, for the hat check problem, the number
Sn of people who get their own hats back has E(Sn) = V (Sn) = 1. Using
Chebyshev’s Inequality, show that P (Sn ≥ 11) ≤ .01 for any n ≥ 11.

10 Let X by any random variable which takes on values 0, 1, 2, . . . , n and has
E(X) = V (X) = 1. Show that, for any integer k,

P (X ≥ k + 1) ≤ 1
k2

.

11 We have two coins: one is a fair coin and the other is a coin that produces
heads with probability 3/4. One of the two coins is picked at random, and this
coin is tossed n times. Let Sn be the number of heads that turns up in these
n tosses. Does the Law of Large Numbers allow us to predict the proportion
of heads that will turn up in the long run? After we have observed a large
number of tosses, can we tell which coin was chosen? How many tosses suffice
to make us 95 percent sure?

12 (Chebyshev8) Assume that X1, X2, . . . , Xn are independent random variables
with possibly different distributions and let Sn be their sum. Letmk = E(Xk),
σ2
k = V (Xk), and Mn = m1 +m2 + · · ·+mn. Assume that σ2

k < R for all k.
Prove that, for any ε > 0,

P

(∣∣∣∣Snn − Mn

n

∣∣∣∣ < ε

)
→ 1

as n→∞.

13 A fair coin is tossed repeatedly. Before each toss, you are allowed to decide
whether to bet on the outcome. Can you describe a betting system with
infinitely many bets which will enable you, in the long run, to win more
than half of your bets? (Note that we are disallowing a betting system that
says to bet until you are ahead, then quit.) Write a computer program that
implements this betting system. As stated above, your program must decide
whether to bet on a particular outcome before that outcome is determined.
For example, you might select only outcomes that come after there have been
three tails in a row. See if you can get more than 50% heads by your “system.”

*14 Prove the following analogue of Chebyshev’s Inequality:

P (|X − E(X)| ≥ ε) ≤ 1
ε
E(|X − E(X)|) .

8P. L. Chebyshev, “On Mean Values,” J. Math. Pure. Appl., vol. 12 (1867), pp. 177–184.
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*15 We have proved a theorem often called the “Weak Law of Large Numbers.”
Most people’s intuition and our computer simulations suggest that, if we toss
a coin a sequence of times, the proportion of heads will really approach 1/2;
that is, if Sn is the number of heads in n times, then we will have

An =
Sn
n
→ 1

2

as n→∞. Of course, we cannot be sure of this since we are not able to toss
the coin an infinite number of times, and, if we could, the coin could come up
heads every time. However, the “Strong Law of Large Numbers,” proved in
more advanced courses, states that

P

(
Sn
n
→ 1

2

)
= 1 .

Describe a sample space Ω that would make it possible for us to talk about
the event

E =
{
ω :

Sn
n
→ 1

2

}
.

Could we assign the equiprobable measure to this space? (See Example 2.18.)

*16 In this problem, you will construct a sequence of random variables which
satisfies the Weak Law of Large Numbers, but not the Strong Law of Large
Numbers (see Exercise 15). For each positive integer n, let the random variable
Xn be defined by

P (Xn = ±n2n) = f(n) ,

P (Xn = 0) = 1− 2f(n) ,

where f(n) is a function that will be chosen later (and which satisfies 0 ≤
f(n) ≤ 1/2 for all positive integers n). Let Sn = X1 +X2 + · · ·+Xn.

(a) Show that µ(Sn) = 0 for all n.

(b) Show that if Xn > 0, then Sn ≥ 2n.

(c) Use part (b) to show that Sn/n→ 0 as n→∞ if and only if there exists
an n0 such that Xk = 0 for all k ≥ n0. Show that this happens with
probability 0 if we require that f(n) < 1/2 for all n. This shows that the
sequence {Xn} does not satisfy the Strong Law of Large Numbers.

(d) We now turn our attention to the Weak Law of Large Numbers. Given
a positive ε, we wish to estimate

P

(∣∣∣∣Snn
∣∣∣∣ ≥ ε

)
.

Suppose that Xk = 0 for m < k ≤ n. Show that

|Sn| ≤ 22m .
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(e) Show that if we define g(n) = (1/2) log2(εn), then

22m < εn .

This shows that if Xk = 0 for g(n) < k ≤ n, then

|Sn| < εn ,

or ∣∣∣∣Snn
∣∣∣∣ < ε .

We wish to show that the probability of this event tends to 1 as n→∞,
or equivalently, that the probability of the complementary event tends
to 0 as n → ∞. The complementary event is the event that Xk 6= 0
for some k with g(n) < k ≤ n. Show that the probability of this event
equals

1−
n∏

k=dg(n)e

(
1− 2f(n)

)
,

and show that this expression is less than

1−
∞∏

k=dg(n)e

(
1− 2f(n)

)
.

(f) Show that by making f(n) → 0 rapidly enough, the expression in part
(e) can be made to approach 1 as n→∞. This shows that the sequence
{Xn} satisfies the Weak Law of Large Numbers.

*17 Let us toss a biased coin that comes up heads with probability p and assume
the validity of the Strong Law of Large Numbers as described in Exercise 15.
Then, with probability 1,

Sn
n
→ p

as n→∞. If f(x) is a continuous function on the unit interval, then we also
have

f

(
Sn
n

)
→ f(p) .

Finally, we could hope that

E

(
f

(
Sn
n

))
→ E(f(p)) = f(p) .

Show that, if all this is correct, as in fact it is, we would have proven that
any continuous function on the unit interval is a limit of polynomial func-
tions. This is a sketch of a probabilistic proof of an important theorem in
mathematics called the Weierstrass approximation theorem.
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8.2 Law of Large Numbers for Continuous Ran-
dom Variables

In the previous section we discussed in some detail the Law of Large Numbers for
discrete probability distributions. This law has a natural analogue for continuous
probability distributions, which we consider somewhat more briefly here.

Chebyshev Inequality

Just as in the discrete case, we begin our discussion with the Chebyshev Inequality.

Theorem 8.3 (Chebyshev Inequality) Let X be a continuous random variable
with density function f(x). Suppose X has a finite expected value µ = E(X) and
finite variance σ2 = V (X). Then for any positive number ε > 0 we have

P (|X − µ| ≥ ε) ≤ σ2

ε2
.

2

The proof is completely analogous to the proof in the discrete case, and we omit
it.

Note that this theorem says nothing if σ2 = V (X) is infinite.

Example 8.4 Let X be any continuous random variable with E(X) = µ and
V (X) = σ2. Then, if ε = kσ = k standard deviations for some integer k, then

P (|X − µ| ≥ kσ) ≤ σ2

k2σ2
=

1
k2

,

just as in the discrete case. 2

Law of Large Numbers

With the Chebyshev Inequality we can now state and prove the Law of Large
Numbers for the continuous case.

Theorem 8.4 (Law of Large Numbers) Let X1, X2, . . . , Xn be an independent
trials process with a continuous density function f , finite expected value µ, and finite
variance σ2. Let Sn = X1 +X2 + · · ·+Xn be the sum of the Xi. Then for any real
number ε > 0 we have

lim
n→∞

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) = 0 ,

or equivalently,

lim
n→∞

P

(∣∣∣∣Snn − µ
∣∣∣∣ < ε

)
= 1 .

2
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Note that this theorem is not necessarily true if σ2 is infinite (see Example 8.8).
As in the discrete case, the Law of Large Numbers says that the average value

of n independent trials tends to the expected value as n→∞, in the precise sense
that, given ε > 0, the probability that the average value and the expected value
differ by more than ε tends to 0 as n→∞.

Once again, we suppress the proof, as it is identical to the proof in the discrete
case.

Uniform Case

Example 8.5 Suppose we choose at random n numbers from the interval [0, 1]
with uniform distribution. Then if Xi describes the ith choice, we have

µ = E(Xi) =
∫ 1

0

x dx =
1
2
,

σ2 = V (Xi) =
∫ 1

0

x2 dx− µ2

=
1
3
− 1

4
=

1
12

.

Hence,

E

(
Sn
n

)
=

1
2
,

V

(
Sn
n

)
=

1
12n

,

and for any ε > 0,

P

(∣∣∣∣Snn − 1
2

∣∣∣∣ ≥ ε) ≤ 1
12nε2

.

This says that if we choose n numbers at random from [0, 1], then the chances
are better than 1− 1/(12nε2) that the difference |Sn/n− 1/2| is less than ε. Note
that ε plays the role of the amount of error we are willing to tolerate: If we choose
ε = 0.1, say, then the chances that |Sn/n − 1/2| is less than 0.1 are better than
1 − 100/(12n). For n = 100, this is about .92, but if n = 1000, this is better than
.99 and if n = 10,000, this is better than .999.

We can illustrate what the Law of Large Numbers says for this example graph-
ically. The density for An = Sn/n is determined by

fAn(x) = nfSn(nx) .

We have seen in Section 7.2, that we can compute the density fSn(x) for the
sum of n uniform random variables. In Figure 8.2 we have used this to plot the
density for An for various values of n. We have shaded in the area for which An
would lie between .45 and .55. We see that as we increase n, we obtain more and
more of the total area inside the shaded region. The Law of Large Numbers tells us
that we can obtain as much of the total area as we please inside the shaded region
by choosing n large enough (see also Figure 8.1). 2
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n=2 n=5 n=10

n=20 n=30 n=50

Figure 8.2: Illustration of Law of Large Numbers — uniform case.

Normal Case

Example 8.6 Suppose we choose n real numbers at random, using a normal dis-
tribution with mean 0 and variance 1. Then

µ = E(Xi) = 0 ,

σ2 = V (Xi) = 1 .

Hence,

E

(
Sn
n

)
= 0 ,

V

(
Sn
n

)
=

1
n
,

and, for any ε > 0,

P

(∣∣∣∣Snn − 0
∣∣∣∣ ≥ ε) ≤ 1

nε2
.

In this case it is possible to compare the Chebyshev estimate for P (|Sn/n−µ| ≥ ε)
in the Law of Large Numbers with exact values, since we know the density function
for Sn/n exactly (see Example 7.9). The comparison is shown in Table 8.1, for
ε = .1. The data in this table was produced by the program LawContinuous. We
see here that the Chebyshev estimates are in general not very accurate. 2
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n P (|Sn/n| ≥ .1) Chebyshev
100 .31731 1.00000
200 .15730 .50000
300 .08326 .33333
400 .04550 .25000
500 .02535 .20000
600 .01431 .16667
700 .00815 .14286
800 .00468 .12500
900 .00270 .11111

1000 .00157 .10000

Table 8.1: Chebyshev estimates.

Monte Carlo Method

Here is a somewhat more interesting example.

Example 8.7 Let g(x) be a continuous function defined for x ∈ [0, 1] with values
in [0, 1]. In Section 2.1, we showed how to estimate the area of the region under
the graph of g(x) by the Monte Carlo method, that is, by choosing a large number
of random values for x and y with uniform distribution and seeing what fraction of
the points P (x, y) fell inside the region under the graph (see Example 2.2).

Here is a better way to estimate the same area (see Figure 8.3). Let us choose a
large number of independent values Xn at random from [0, 1] with uniform density,
set Yn = g(Xn), and find the average value of the Yn. Then this average is our
estimate for the area. To see this, note that if the density function for Xn is
uniform,

µ = E(Yn) =
∫ 1

0

g(x)f(x) dx

=
∫ 1

0

g(x) dx

= average value of g(x) ,

while the variance is

σ2 = E((Yn − µ)2) =
∫ 1

0

(g(x)− µ)2 dx < 1 ,

since for all x in [0, 1], g(x) is in [0, 1], hence µ is in [0, 1], and so |g(x) − µ| ≤ 1.
Now let An = (1/n)(Y1 + Y2 + · · ·+ Yn). Then by Chebyshev’s Inequality, we have

P (|An − µ| ≥ ε) ≤
σ2

nε2
<

1
nε2

.

This says that to get within ε of the true value for µ =
∫ 1

0
g(x) dx with probability

at least p, we should choose n so that 1/nε2 ≤ 1− p (i.e., so that n ≥ 1/ε2(1− p)).
Note that this method tells us how large to take n to get a desired accuracy. 2
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Y
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Y = g (x)

0

1

1

Figure 8.3: Area problem.

The Law of Large Numbers requires that the variance σ2 of the original under-
lying density be finite: σ2 <∞. In cases where this fails to hold, the Law of Large
Numbers may fail, too. An example follows.

Cauchy Case

Example 8.8 Suppose we choose n numbers from (−∞,+∞) with a Cauchy den-
sity with parameter a = 1. We know that for the Cauchy density the expected value
and variance are undefined (see Example 6.28). In this case, the density function
for

An =
Sn
n

is given by (see Example 7.6)

fAn(x) =
1

π(1 + x2)
,

that is, the density function for An is the same for all n. In this case, as n increases,
the density function does not change at all, and the Law of Large Numbers does
not hold. 2

Exercises

1 Let X be a continuous random variable with mean µ = 10 and variance
σ2 = 100/3. Using Chebyshev’s Inequality, find an upper bound for the
following probabilities.
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(a) P (|X − 10| ≥ 2).

(b) P (|X − 10| ≥ 5).

(c) P (|X − 10| ≥ 9).

(d) P (|X − 10| ≥ 20).

2 Let X be a continuous random variable with values unformly distributed over
the interval [0, 20].

(a) Find the mean and variance of X.

(b) Calculate P (|X − 10| ≥ 2), P (|X − 10| ≥ 5), P (|X − 10| ≥ 9), and
P (|X − 10| ≥ 20) exactly. How do your answers compare with those of
Exercise 1? How good is Chebyshev’s Inequality in this case?

3 Let X be the random variable of Exercise 2.

(a) Calculate the function f(x) = P (|X − 10| ≥ x).

(b) Now graph the function f(x), and on the same axes, graph the Chebyshev
function g(x) = 100/(3x2). Show that f(x) ≤ g(x) for all x > 0, but
that g(x) is not a very good approximation for f(x).

4 Let X be a continuous random variable with values exponentially distributed
over [0,∞) with parameter λ = 0.1.

(a) Find the mean and variance of X.

(b) Using Chebyshev’s Inequality, find an upper bound for the following
probabilities: P (|X − 10| ≥ 2), P (|X − 10| ≥ 5), P (|X − 10| ≥ 9), and
P (|X − 10| ≥ 20).

(c) Calculate these probabilities exactly, and compare with the bounds in
(b).

5 Let X be a continuous random variable with values normally distributed over
(−∞,+∞) with mean µ = 0 and variance σ2 = 1.

(a) Using Chebyshev’s Inequality, find upper bounds for the following prob-
abilities: P (|X| ≥ 1), P (|X| ≥ 2), and P (|X| ≥ 3).

(b) The area under the normal curve between −1 and 1 is .6827, between
−2 and 2 is .9545, and between −3 and 3 it is .9973 (see the table in
Appendix A). Compare your bounds in (a) with these exact values. How
good is Chebyshev’s Inequality in this case?

6 If X is normally distributed, with mean µ and variance σ2, find an upper
bound for the following probabilities, using Chebyshev’s Inequality.

(a) P (|X − µ| ≥ σ).

(b) P (|X − µ| ≥ 2σ).

(c) P (|X − µ| ≥ 3σ).
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(d) P (|X − µ| ≥ 4σ).

Now find the exact value using the program NormalArea or the normal table
in Appendix A, and compare.

7 If X is a random variable with mean µ 6= 0 and variance σ2, define the relative
deviation D of X from its mean by

D =
∣∣∣∣X − µµ

∣∣∣∣ .
(a) Show that P (D ≥ a) ≤ σ2/(µ2a2).

(b) If X is the random variable of Exercise 1, find an upper bound for P (D ≥
.2), P (D ≥ .5), P (D ≥ .9), and P (D ≥ 2).

8 Let X be a continuous random variable and define the standardized version
X∗ of X by:

X∗ =
X − µ
σ

.

(a) Show that P (|X∗| ≥ a) ≤ 1/a2.

(b) If X is the random variable of Exercise 1, find bounds for P (|X∗| ≥ 2),
P (|X∗| ≥ 5), and P (|X∗| ≥ 9).

9 (a) Suppose a number X is chosen at random from [0, 20] with uniform
probability. Find a lower bound for the probability that X lies between
8 and 12, using Chebyshev’s Inequality.

(b) Now suppose 20 real numbers are chosen independently from [0, 20] with
uniform probability. Find a lower bound for the probability that their
average lies between 8 and 12.

(c) Now suppose 100 real numbers are chosen independently from [0, 20].
Find a lower bound for the probability that their average lies between
8 and 12.

10 A student’s score on a particular calculus final is a random variable with values
of [0, 100], mean 70, and variance 25.

(a) Find a lower bound for the probability that the student’s score will fall
between 65 and 75.

(b) If 100 students take the final, find a lower bound for the probability that
the class average will fall between 65 and 75.

11 The Pilsdorff beer company runs a fleet of trucks along the 100 mile road from
Hangtown to Dry Gulch, and maintains a garage halfway in between. Each
of the trucks is apt to break down at a point X miles from Hangtown, where
X is a random variable uniformly distributed over [0, 100].

(a) Find a lower bound for the probability P (|X − 50| ≤ 10).
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(b) Suppose that in one bad week, 20 trucks break down. Find a lower bound
for the probability P (|A20 − 50| ≤ 10), where A20 is the average of the
distances from Hangtown at the time of breakdown.

12 A share of common stock in the Pilsdorff beer company has a price Yn on
the nth business day of the year. Finn observes that the price change Xn =
Yn+1 − Yn appears to be a random variable with mean µ = 0 and variance
σ2 = 1/4. If Y1 = 30, find a lower bound for the following probabilities, under
the assumption that the Xn’s are mutually independent.

(a) P (25 ≤ Y2 ≤ 35).

(b) P (25 ≤ Y11 ≤ 35).

(c) P (25 ≤ Y101 ≤ 35).

13 Suppose one hundred numbers X1, X2, . . . , X100 are chosen independently at
random from [0, 20]. Let S = X1 + X2 + · · · + X100 be the sum, A = S/100
the average, and S∗ = (S − 1000)/(10/

√
3) the standardized sum. Find lower

bounds for the probabilities

(a) P (|S − 1000| ≤ 100).

(b) P (|A− 10| ≤ 1).

(c) P (|S∗| ≤
√

3).

14 Let X be a continuous random variable normally distributed on (−∞,+∞)
with mean 0 and variance 1. Using the normal table provided in Appendix A,
or the program NormalArea, find values for the function f(x) = P (|X| ≥ x)
as x increases from 0 to 4.0 in steps of .25. Note that for x ≥ 0 the table gives
NA(0, x) = P (0 ≤ X ≤ x) and thus P (|X| ≥ x) = 2(.5 −NA(0, x). Plot by
hand the graph of f(x) using these values, and the graph of the Chebyshev
function g(x) = 1/x2, and compare (see Exercise 3).

15 Repeat Exercise 14, but this time with mean 10 and variance 3. Note that
the table in Appendix A presents values for a standard normal variable. Find
the standardized version X∗ for X, find values for f∗(x) = P (|X∗| ≥ x) as in
Exercise 14, and then rescale these values for f(x) = P (|X − 10| ≥ x). Graph
and compare this function with the Chebyshev function g(x) = 3/x2.

16 Let Z = X/Y where X and Y have normal densities with mean 0 and standard
deviation 1. Then it can be shown that Z has a Cauchy density.

(a) Write a program to illustrate this result by plotting a bar graph of 1000
samples obtained by forming the ratio of two standard normal outcomes.
Compare your bar graph with the graph of the Cauchy density. Depend-
ing upon which computer language you use, you may or may not need to
tell the computer how to simulate a normal random variable. A method
for doing this was described in Section 5.2.
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(b) We have seen that the Law of Large Numbers does not apply to the
Cauchy density (see Example 8.8). Simulate a large number of experi-
ments with Cauchy density and compute the average of your results. Do
these averages seem to be approaching a limit? If so can you explain
why this might be?

17 Show that, if X ≥ 0, then P (X ≥ a) ≤ E(X)/a.

18 (Lamperti9) Let X be a non-negative random variable. What is the best
upper bound you can give for P (X ≥ a) if you know

(a) E(X) = 20.

(b) E(X) = 20 and V (X) = 25.

(c) E(X) = 20, V (X) = 25, and X is symmetric about its mean.

9Private communication.


